

A Two-Stage Masked Autoencoder Based Network for Indoor Depth Completion

Kailai Sun^{1,2,*}, Zhou Yang^{1,*}, Qianchuan Zhao¹

¹Tsinghua University, ²National University of Singapore (*Equal contribution)

- Paper, code, and demo are available:
- kailaisun/Indoor-Depth-Completion

Introduction:

- > **Problem:** Depth image captured by RGBD cameras are influenced by illumination or the materials of the objects.
- ➤ **Goal:** A novel two-stage approach provide more accurate and complete depth images.
- Simulate?

 Key idea: Missing depth patches _____ Masks

Method:

➤ (a) First stage: Masked Autoencoder (MAE)-based Self-supervision Pre-training. It aims to learn an effective latent representation from the jointly masked RGB and depth images. Unlike MAE, we only mask the missing depth areas; in loss function, we only consider the parts where the depth value exceeds zero.

$$RMSE(D, DT) = \sqrt{\frac{1}{|O|}} \sum_{p \in O} ||D(p) - DT(p)||^{2}$$

➤ (b) Second stage: Indoor Depth Completion Based on Supervised Fine-tuning. It aims to learn a decoder based on token fusion to complete (reconstruct) the full depth from an incomplete depth image.

Experiments:

Quantitative Comparison:

Methods	RMSE↓	ME↓	SSIM↑	$\delta_{1.25}\uparrow$	$\delta_{1.25^2}\uparrow$
Joint Bilateral Filter	1.978	0.774	0.507	0.613	0.689
MRF[1]	1.675	0.618	0.692	0.651	0.780
AD[2]	1.653	0.610	0.696	0.663	0.792
FCN	1.262	0.517	0.605	0.681	0.808
Zhang[3]	1.316	0.461	0.762	0.781	0.851
Huang[4]	1.092	0.342	$\boldsymbol{0.799}$	0.850	0.911
Struct-MDC[5]	1.060	0.503	0.534	0.656	0.713
Pre-training	1.216	0.675	0.642	0.705	0.800
Fine-tuning w/o Pre-training	0.660	0.243	0.654	0.794	0.904
Fine-tuning w/ Pre-training	0.690	0.206	$\boldsymbol{0.765}$	$\boldsymbol{0.852}$	$\boldsymbol{0.912}$

Qualitative Comparison:

Raw PCD GT PCD GT PCD A COLOR OF THE PCD GT PCD GT PCD GT PCD A COLOR OF THE PCD GT PCD A COLOR OF THE PCD A COLOR O

Additional Applications:

- Indoor 3D Reconstruction with completed depth images performs better than uncompleted depth images
- ORB SLAM 3 method was used to reconstruct indoor scene on ICL-NUIM dataset.

Reconstruction Error Before/After Depth Completion

Methods	Mean (m)↓	Median (m)↓	Standard Deviation (m)↓	Minimum (m)	Maximum (m)↓
Depth uncompletion	0.138	0.053	0.200	0.0	1.106
Depth completion	0.086	0.057	0.101	0.0	1.100

References

Jinwoo Jeon, Hyunjun Lim, Dong-Uk Seo, and Hyun Myung. Struct-mdc: Meshrefined unsupervised depth completion leveraging structural regularities from visual slam. IEEE Robotics and Automation Letters, 7(3):6391–6398, 2022.2

Huang YK, WuTH, Liu YC, et al. Indoor depth completion with boundary consistency and self-attention. ICCV. 2019.