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Background & Problems

Fig.4 Effect of the D-S evidence theory[2] based data fusion

Fig.6 Comparison against different cloud removal methods on test images.
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Fig.2 Structure of the Cloud-net model [1]. Inputs: 384×384 image with 4 channel
s (RGB and NIR). Outputs: cloud confidence. 

Fig.5 Row 1: outputs without the prior knowledge. Row 2: outputs without the D-
S evidence theory. Row 3: outputs with all components.

Table.1 Estimated cloud rates before and after cloud removal. The cloud rate: 
number of cloud pixels/number of total pixels of output images.

Area/MSE WLR[3] STS-CNN[4] PSTCR[5] Our method

1 0.0552 0.0931 0.0844 0.0501

2 0.1152 0.0200 0.1204 0.0191

3 1.066 0.8268 0.9092 0.7813

4 0.1484 0.0886 0.2025 0.0335

5 1.115 0.7198 0.8202 0.6664

6 0.832 0.1190 0.0416 0.0348

Color prior knowledge & D-S Evidence fusion method

Cloud segmentation network

Fig.3 Effect of the color prior knowledge
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Ablation study

Cloud removal results
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Fig.1 Application of remote sensing images.

Our contributions & Advantages

1. We introduced color prior knowledge to improve detection (Cloud-net) perfor
mance.

2. We designed a cloud removal rule that can effectively fuse multi-temporal re
mote sensing images, based on the D-S evidence theory.

3. We applied our method to real satellite remote sensing images and achieve
d a significant cloud removal performance.

Advantages:

1. Our method do not require cloudless images as the reference.

2. Our method can be applied to real remote sensing images containing thick clou
ds with a surprising performance (reducing the average percentage of cloud nois
e from 30%-40% to 2%-8% on GaoFen-4 (GF-4) satellite images).

3. Our method can deal with images with a high percentage of cloud noise.

Table.2 Comparison of MSE against different cloud removal methods on test images.

Area/Cloud rate WLR[3] STS-CNN[4] PSTCR[5] Our method

1 22.51% 23.07% 20.49% 2.55%

2 33.90% 15.44% 24.59% 2.66%

3 28.35% 26.89% 22.76% 2.14%

4 33.86% 24.74% 29.79% 7.37%

5 31.13% 26.75% 25.85% 2.67%

6 31.79% 29.32% 17.51% 1.76%


