Research on Multi-temporal Cloud Removal Using D-S Evidence Theory and Cloud Segmentation Model

Xinwei Wang*, Kailai Sun*, Qianchuan Zhao, Jianhong Zou

CFINS, Department of Automation, Tsinghua University

Emails: wxw21@mails.tsinghua.edu.cn; skl18@mails.tsinghua.edu.cn; zhaoqc@tsinghua.edu.cn

Fig.1 Application of remote sensing images.

Our contributions & Advantages

- 1. We introduced **color prior knowledge** to improve detection (Cloud-net) perfor mance.
- 2. We designed a cloud removal rule that can effectively fuse **multi-temporal** re mote sensing images, based on the **D-S evidence theory**.
- 3. We applied our method to **real satellite remote sensing images** and achieve d a significant cloud removal performance.

Advantages:

- 1. Our method do not require cloudless images as the reference.
- 2. Our method can be applied to real remote sensing images containing thick clouds with a surprising performance (reducing the average percentage of cloud noise from 30%-40% to 2%-8% on GaoFen-4 (GF-4) satellite images).
- 3. Our method can deal with images with a high percentage of cloud noise.

Fig.2 Structure of the Cloud-net model [1]. Inputs: 384×384 image with 4 channel s (RGB and NIR). Outputs: cloud confidence.

Fig.3 Effect of the color prior knowledge

$$Pla(OC) = \frac{1}{K} \sum_{A_1 \cap A_2 \cap \dots \cap A_q = C} m_1(A_1) m_2(A_2) \dots m_q(A_q)$$

$$Pla(OCL) = \frac{1}{K} \sum_{A_1 \cap A_2 \cap \dots \cap A_q = CL} m_1(A_1) m_2(A_2) \dots m_q(A_q)$$

$$Mae^{\text{Stunction}}$$
D-S Evidence Theory based Data Fusion

Fig.4 Effect of the D-S evidence theory[2] based data fusion

Fig.5 Row 1: outputs without the prior knowledge. Row 2: outputs without the D-S evidence theory. Row 3: outputs with all components.

Cloud removal results Cloud removal results Input1 Input2 WLR STS-CNN PSTCR Our method GT

Fig.6 Comparison against different cloud removal methods on test images.

Table.1 Estimated cloud rates before and after cloud removal. The cloud rate: number of cloud pixels/number of total pixels of output images.

Our method	PSTCR[5]	STS-CNN[4]	WLR[3]	Area/Cloud rate
2.55%	20.49%	23.07%	22.51%	1
2.66%	24.59%	15.44%	33.90%	2
2.14%	22.76%	26.89%	28.35%	3
7.37%	29.79%	24.74%	33.86%	4
2.67%	25.85%	26.75%	31.13%	5
1.76%	17.51%	29.32%	31.79%	6

Table.2 Comparison of MSE against different cloud removal methods on test images.

Area/MSE	WLR[3]	STS-CNN[4]	PSTCR[5]	Our method
1	0.0552	0.0931	0.0844	0.0501
2	0.1152	0.0200	0.1204	0.0191
3	1.066	0.8268	0.9092	0.7813
4	0.1484	0.0886	0.2025	0.0335
5	1.115	0.7198	0.8202	0.6664
6	0.832	0.1190	0.0416	0.0348

REFERENCES

- [1] Mohajerani, S., Saeedi, P. Cloud-net: An end-to-end cloud detection algorithm for Landsat 8 imagery. In: IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium. 1029–1032. IEEE (2019)
- [2] Yager, R.R.: On the dempster-shafer framework and new combination rules. Information sciences. 41(2), 93–137 (1987)
- [3] Zeng, C., Shen, H., Zhang, L. Recovering missing pixels for Landsat ETM + SLC-off imagery using multi-temporal regression analysis and a regularization method. Remote Sensing of Environment. 131, 182–194 (2013)
- [4] Zhang, Q, et al. Missing data reconstruction in remote sensing image with a unified spatial—temporal—spectral deep convolutional neural network. IEEE Transactions on Geoscience and Remote Sensing. 56(8), 4274–4288 (2018)
- [5] Zhang, Q., et al. Thick cloud and cloud shadow removal in multitemporal imagery using progressively spatio-temporal patch group deep learning. ISPRS Journal of Photogrammetry and Remote Sensing.162, 148–160 (2020)